# Nutrient Management in Aquaponics *at Auburn University*

Daniel E. Wells Department of Horticulture Auburn University



- Aquaponics Aquaculture + Hydroponics
- Basic idea is:
  - Multiple uses of water
  - Recover as much value from inputs as possible
  - **Minimize** negative environmental impact
  - Sustainable system



# What are we growing?

• What are you growing in an aquaponic system?

- At least 3 things:
- 1. Aquatic animals (usually fish)
- 2. Plants (high value)
- 3. Bacteria



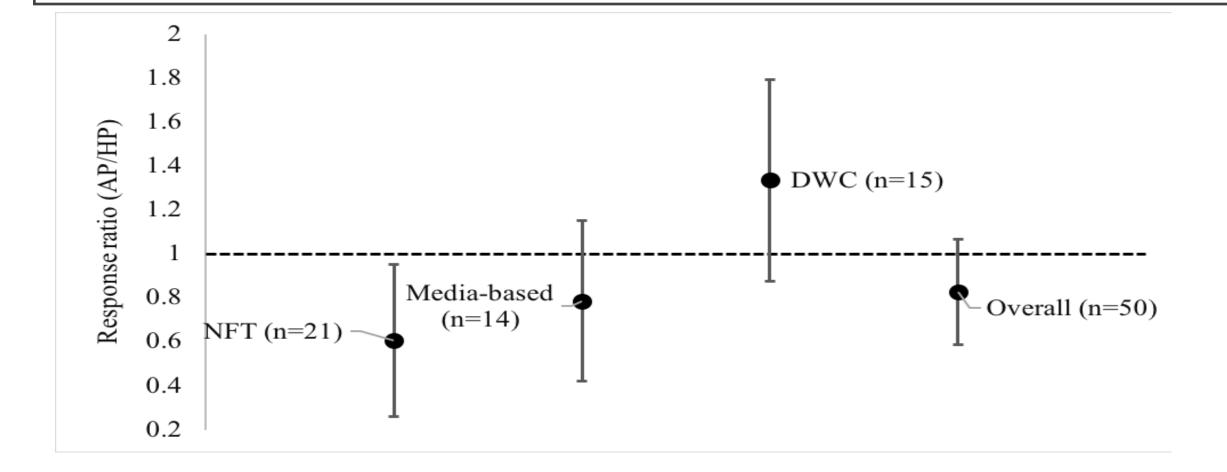
### Plants

• Need to grow high-value plants.

• Species that are **normally grown in hydroponics**.

• With some exceptions possibly...




# Choosing a Hydroponic System

- Several, proven technologies
- Based on the type of plant(s) you want to grow and how you want to manage them
- Two basic categories that we can use:
- 1. Water Culture
- 2. Soilless Substrate Culture



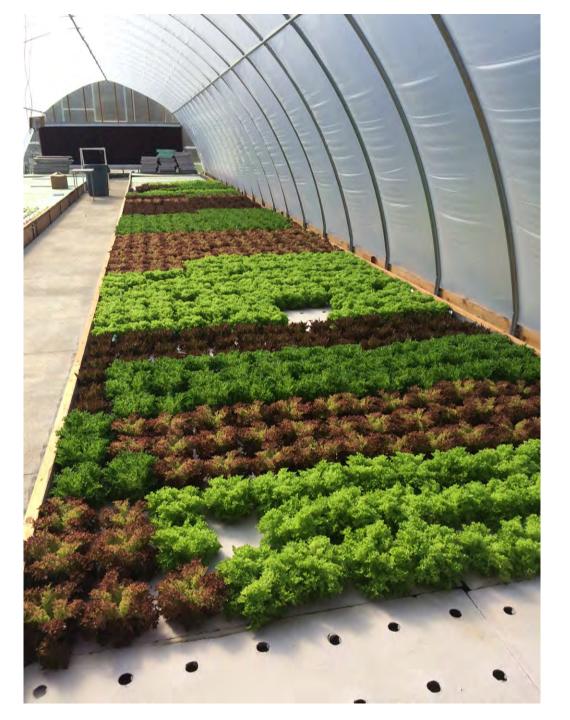
# Hydroponic System

How is plant yield affected by system type?



#### NFT:

Nutrient Film Technique


- Recirculating system
- Not typically aerated
- Easy to use for growers



#### DWC:

Deep Water Culture or Raft Culture

- Recirculating or static system
- Typically aerated
- Inexpensive option
- More laborious than NFT

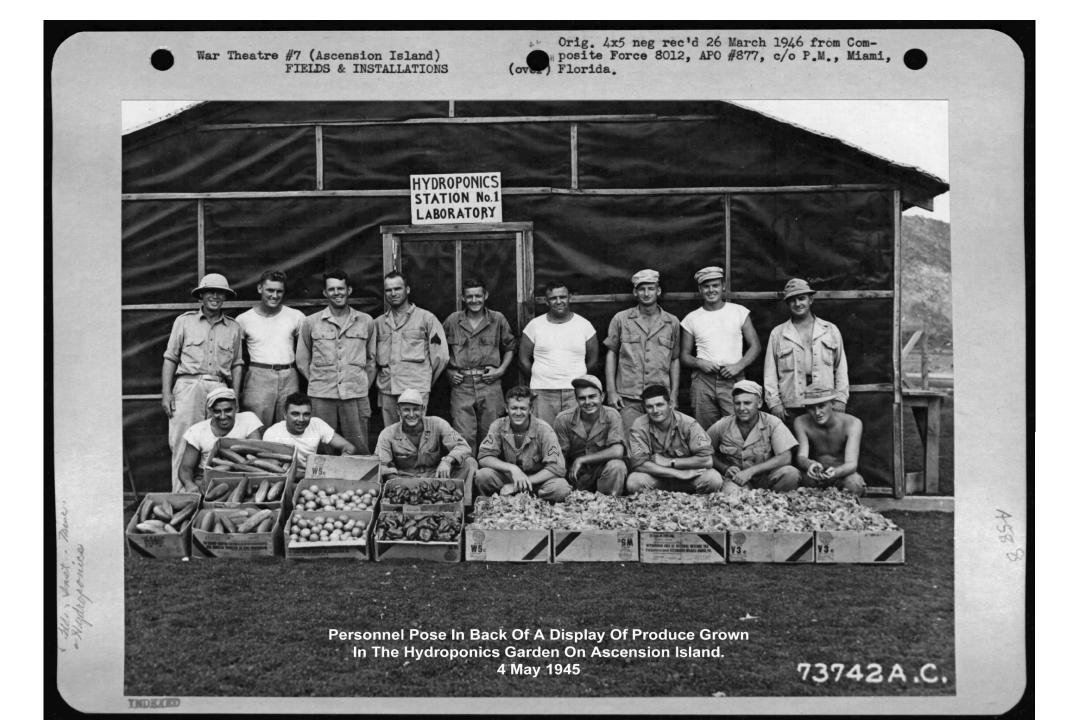




#### **Dutch Bucket Culture**









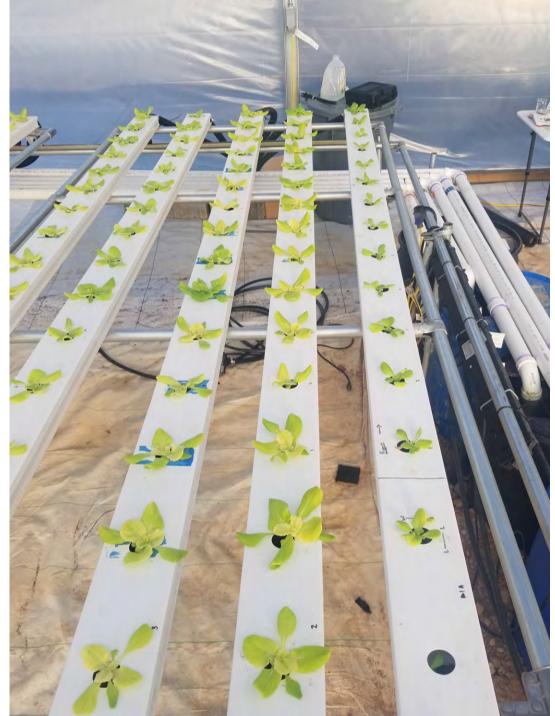





### Indoor/Vertical Farming



# Plant Nutrition and Common Problems in Aquaponics


Daniel E. Wells

**Department of Horticulture** 

Auburn University

















# What are plant nutrients?

- Essential elements required for normal plant growth.
- Present in soil solution or nutrient solution.
- All essential elements MUST be provided by the grower in an aquaponic system.



# What is a plant made of?

- 80 90% water (H<sub>2</sub>O)
- 10 20% dry matter
- 96% of dry matter is Carbon (C), Oxygen (O), and Hydrogen (H)
- 99.2 99.6% of the entire plant = C, O, H
- 0.4 0.8% other elements



# What is a plant made of?

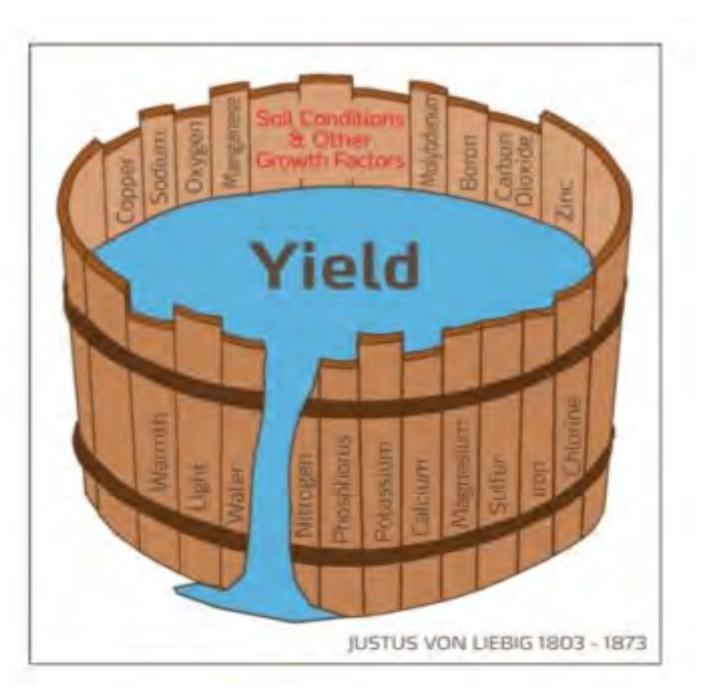
- 80 90% water (H<sub>2</sub>O)
- 10 20% dry matter
- 96% of dry matter is Carbon (C), Oxygen (O), and Hydrogen (H)
- 99.2 99.6% of the entire plant = C, O, H
- May be as high as 1 2% other elements



# Three Rules for Essentiality

- 1. The element must be needed by the plant to complete its life cycle.
- 2. No other element can substitute for the element in question.
- 3. The element must exert its effect directly on growth or metabolism and not by some indirect effect.




# Law of the Minimum

- Liebig's "*law of the minimum*" states that yield is proportional to the amount of the **most limiting** nutrient, **whicheve**r nutrient that may be.
- Plant growth and yield **can and will** be limited by the the absence or limiting quantity of **any** of the essential elements.



Justus von Liebig's "Law of the Minimum" published in 1873

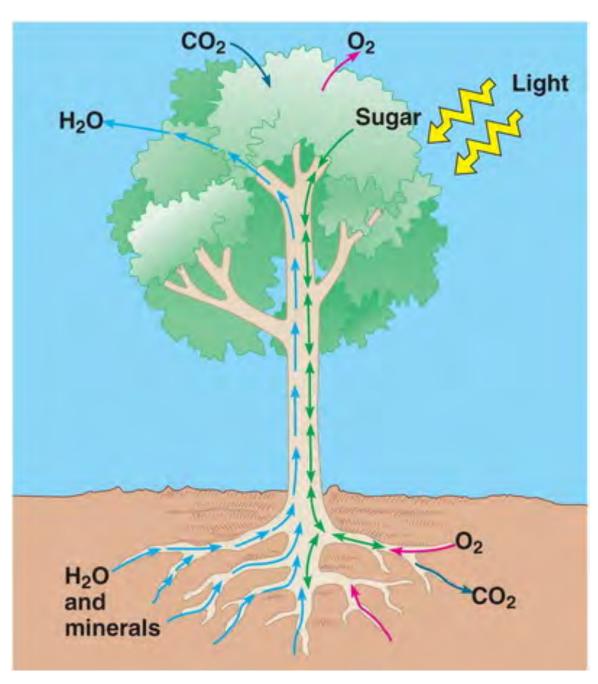
"If one growth factor/nutrient is deficient, plant growth is limited, even if all other vital factors/nutrients are adequate...plant growth is improved by increasing the supply of the deficient factor/nutrient"



### 18 Essential Elements

- C, O, H, N, P, K, Ca, Mg, S, Cl, Fe, Mn, B, Zn, Cu, Mo, Ni, Al
- Typically divided into macro- and micronutrients.
- Depending on source, between 14 and 18 essential elements.



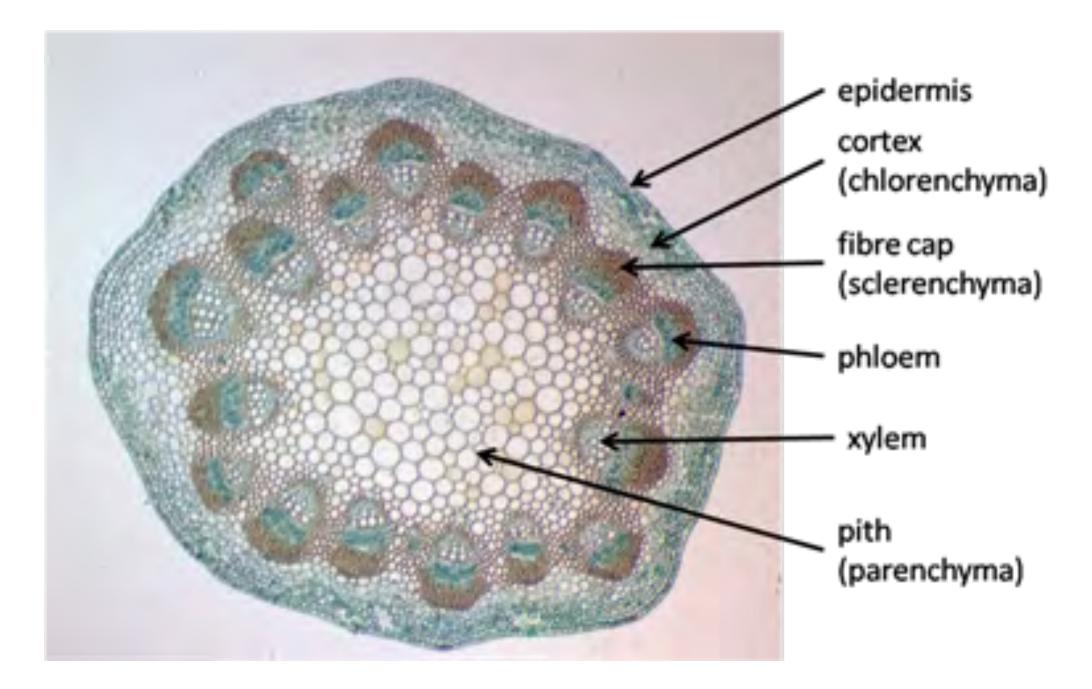

# The Nutrient Solution

- Essential elements *must be* dissolved in water and in the *proper form* to be plant-available.
- In soil elements are dissolved in the soil solution before being "taken up" by plant roots.
- Root hairs come into contact with soil solution and elements can pass into the plant.
- Electrochemical gradients



### Transpiration and Mass Flow

- Essentially, in a hydroponic system mass flow is the method of all nutrient movement to plant roots.
- Driven by transpiration.




# Xylem

- The xylem is a "one way street".
- "Zip *up"* the xylem.
- The other conductive tissue in the plant is called the **phloem**.

• Photosynthates (sugars) are transported from leaves to others parts of the plant via the phloem.



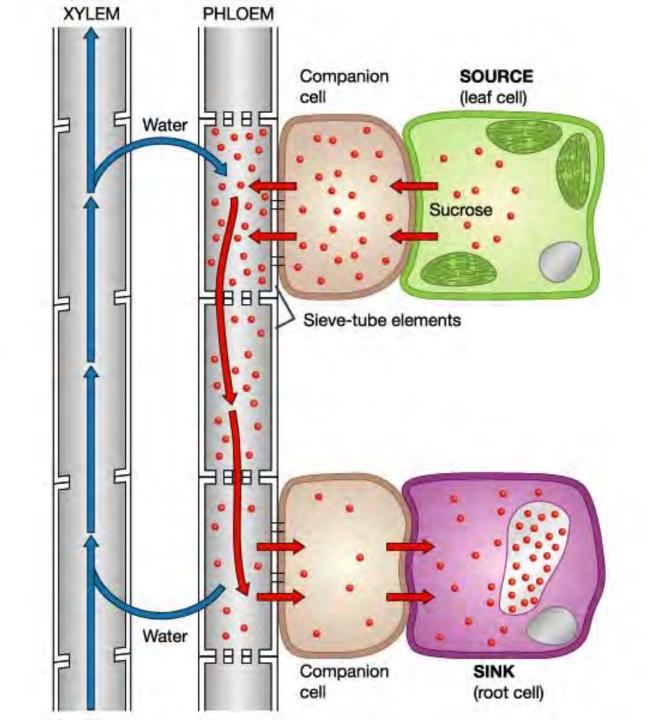


## Phloem

• Not only transports sugars, but also nutrients (if needed).

• Important concept in plant nutrition.

• "Flow *down* the phloem"


• Phloem transport can lead to clues about nutrient deficiencies.



# Nutrient Mobility

- Elements are generally (relatively) mobile or immobile within plants.
- Phloem transport *retranslocation*





## Mobile or Immobile?

- By asking a basic question we can determine what category the deficient nutrient fits into.
- Where did symptoms first appear?
- A: New growth Immobile nutrients
- A: Old growth Mobile nutrients



# Mobility within Plants

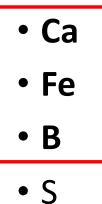
#### **Mobile Nutrients**

- N
- P
- K
- Mg
- Zn
- Mo
- Cl

#### **Immobile Nutrients**

- Ca
- Fe
- B
- S
- Cu
- Mn




## Problems in the AU Aquaponics System

#### **Mobile Nutrients**



- Zn
- Mo
- Cl

#### **Immobile Nutrients**



- Cu
- Mn



UNIVERSITY

# Nutrient Deficiencies

#### Concepts, Causes, and Symptoms



UNIVERSITY

#### Nutritional Disorders

- Deficiency or excess of an essential element can cause a malfunction in plant physiology.
- Often accompanied by visual symptoms.
- Symptoms can be different between plant species.



UNIVERSITY

## Nutrient Managment



## Ensure proper concentrations / availability / ratios



#### pH management



Environmental conditions (temperature, photoperiod, RH)

#### Ensure availability

Element not present in adequate quantities

- It's important to know what is in solution at all times. Know what we start with..
- If adequate concentrations are not available, we simply can add more of that nutrient (sometimes not so simply)

#### Ensure availability

Other elements antagonize uptake

- Nutrient is present in solution.
- Bound/sorbed/precipitated with other element(s).
- Out-competed by other elements for entry into plant cells

Solution pH

- Elements are present, but in the wrong form.
- pH often dictates form.
- Sorption / precipitation reactions (Ca P)

## What is pH?

- pH is the concentration of H<sup>+</sup> in soil solution or nutrient solution (or any other solution)
- Measured on a logarithmic scale from 0-14.
- Logarithmic means every whole number change in value equals a 10x concentration change of H<sup>+</sup>.
- Measurable change in pH is a big deal!

#### pH: The Chemical Driver

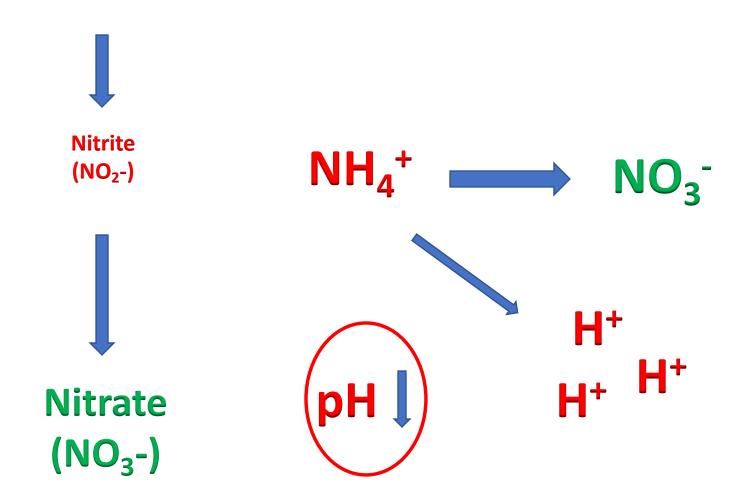
- pH needs to be reconciled for at least three types of species (fish, bacteria, plants)
- One of the possible difficulties with aquaponics
- Coupled vs. Decoupled
- At AU we have a de-coupled system

#### Proper pH Management

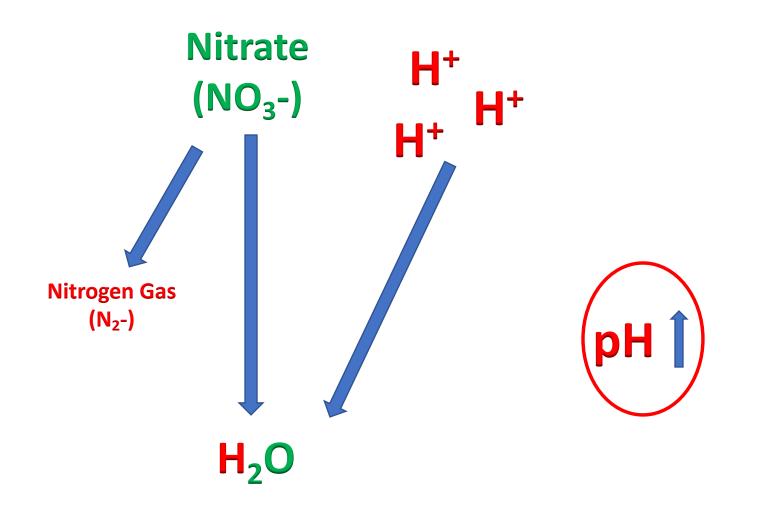
- The approach in hydroponics:
- Ensure pH remains constant.
- Usually pH = **5.8**

| Very<br>Extreme strong Stro<br>acidity acidity acid |       | Slight<br>acidity | Very<br>slight<br>acidity | Slight alkalinity | Moderate alkalinity | Strong alkalinity | Ver<br>stroi<br>alkali |
|-----------------------------------------------------|-------|-------------------|---------------------------|-------------------|---------------------|-------------------|------------------------|
|                                                     |       |                   |                           |                   |                     |                   |                        |
|                                                     |       |                   | Nitro                     | gen               |                     |                   |                        |
|                                                     |       |                   | Phosp                     | horus             |                     |                   |                        |
|                                                     |       |                   | 1 Heep                    |                   |                     |                   |                        |
|                                                     |       |                   | Potas                     | sium              |                     |                   |                        |
|                                                     |       |                   |                           |                   |                     | -1                |                        |
|                                                     |       |                   | Sulp                      | hur               |                     |                   | 1                      |
| and the second second                               |       |                   | Calo                      | ium               |                     |                   |                        |
| ACIDITY                                             |       |                   | Ould                      | Juli              | -                   | ALKALINI          | TV                     |
| H <sup>+</sup> ION CONCENTRAT                       | TION  |                   |                           |                   |                     | OH- ION CONCEN    | TRAT                   |
|                                                     |       |                   | Magn                      | esium             |                     |                   |                        |
|                                                     |       |                   |                           |                   |                     |                   |                        |
|                                                     |       |                   | Iro                       | n                 |                     |                   |                        |
|                                                     |       |                   |                           |                   |                     |                   |                        |
|                                                     |       |                   | anganese                  |                   |                     |                   |                        |
|                                                     |       |                   | Bor                       | on                |                     |                   |                        |
|                                                     | 0 C . |                   |                           |                   |                     |                   |                        |
|                                                     |       |                   | Coppera                   | and Zinc          |                     |                   |                        |
|                                                     |       |                   |                           |                   |                     |                   |                        |

## pH Experiment for Cucumber production


• Designed an experiment to keep pH high in fish system and lower for plant system.

| Target pH treatments | Acids used:   | Injected using          |      |
|----------------------|---------------|-------------------------|------|
| 1. 7.0 (control)     |               | Chemilizer<br>Injectors |      |
| 2. 6.5               | Citric Acid   | Injectors               |      |
| 3. 5.8               | Sulfuric Acid |                         |      |
| 4. 5.0               |               |                         | PH I |










#### DENITRIFICATION



|    | AU<br>Aquaponics<br>Water | Recommendations<br>Hydroponic<br>Cucumbers | Foliar<br>Sufficiency<br>Ranges for<br>Greenhouse<br>Cucumber | pH = 7.0 | pH = 6.5 | pH = 5.8 | pH = 5.0 |
|----|---------------------------|--------------------------------------------|---------------------------------------------------------------|----------|----------|----------|----------|
| Ν  | 180                       | 135                                        | 4.5-6.0%                                                      | 5.7%     | 5.6%     | 5.8%     | 5.7%     |
| Ρ  | 7.5                       | 62                                         | 0.34-1.25%                                                    | 0.62%    | 0.51%    | 0.54%    | 0.51%    |
| К  | 100                       | 150                                        | 3.90-5.00%                                                    | 3.2%     | 3.4%     | 3.2%     | 3.3%     |
| Са | 185                       | 130                                        | 1.4-3.5%                                                      | 4.6%     | 4.7%     | 4.9%     | 4.5%     |
| Mg | 20                        | 50                                         | 0.3-1.0%                                                      | 0.46%    | 0.51%    | 0.51%    | 0.46%    |
| S  | 50                        | 70                                         | 0.4-0.7%                                                      | 0.98%    | 0.9%     | 1.1%     | 1.0%     |
| Fe | 0.05                      | 2.5                                        | 50-300 ppm                                                    | 78 ppm   | 89 ppm   | 86 ppm   | 144 ppm  |
| В  | 0.08                      | 0.4                                        | 25-60 ppm                                                     | 43 ppm   | 38 ppm   | 40 ppm   | 38 ppm   |
| Cu | 0.02                      | 0.05                                       | 7-20 ppm                                                      | 11 ppm   | 9 ppm    | 10 ppm   | 10 ppm   |
| Mn | 0.05                      | 0.6                                        | 50-300 ppm                                                    | 184 ppm  | 118 ppm  | 166 ppm  | 214 ppm  |
| Zn | 0.1                       | 0.1                                        | 25-100 ppm                                                    | 79 ppm   | 61 ppm   | 62 ppm   | 79 ppm   |

Target pH = 5.8Yield =  $20 \text{ kg} / \text{m}^2$ 

Target pH = 7.0 Yield =  $19.4 \text{ kg}/\text{m}^2$ 

#### **Ensure Proper Concentrations**

- The approach in hydroponics:
- Ensure all nutrients are in high enough concentrations that none are limiting.
- Balance nutrients / Ensure proper ratios

Nutrient Concentrations for Greenhouse Vegetables in ppm (final solution)

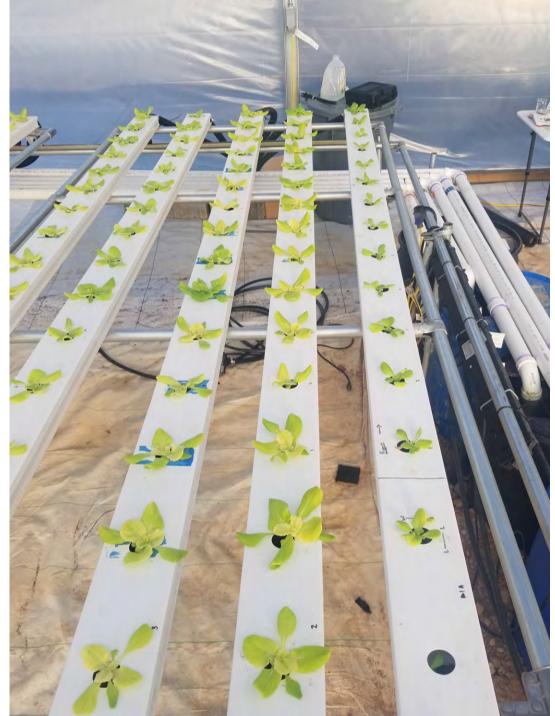
|    | Tomato | Cucumber | Lettuce | AU Aquaponics |
|----|--------|----------|---------|---------------|
| Ν  | 105    | 135      | 200     | 180           |
| Р  | 60     | 62       | 62      | 7.5           |
| К  | 200    | 150      | 150     | 100           |
| Са | 100    | 130      | 210     | 185           |
| Mg | 50     | 50       | 40      | 20            |
| S  | 70     | 70       | 70      | 50            |
| Fe | 2.5    | 2.5      | 2.5     | 0.05          |
| В  | 0.4    | 0.4      | 0.4     | 0.08          |
| Cu | 0.05   | 0.05     | 0.05    | 0.02          |
| Mn | 0.6    | 0.6      | 0.6     | 0.05          |
| Zn | 0.1    | 0.1      | 0.1     | 0.1           |

# Nutrient Concentrations for Greenhouse Vegetables in ppm (final solution)

|    | Tomato | Cucumber | Lettuce | AU Aquaponics |
|----|--------|----------|---------|---------------|
| Ν  | 105    | 135      | 200     | 180           |
| Ρ  | 60     | 62       | 62      | 7.5           |
| К  | 200    | 150      | 150     | 100           |
| Са | 100    | 130      | 210     | 185           |
| Mg | 50     | 50       | 40      | 20            |
| S  | 70     | 70       | 70      | 50            |
| Fe | 2.5    | 2.5      | 2.5     | 0.05          |
| В  | 0.4    | 0.4      | 0.4     | 0.08          |
| Cu | 0.05   | 0.05     | 0.05    | 0.02          |
| Mn | 0.6    | 0.6      | 0.6     | 0.05          |
| Zn | 0.1    | 0.1      | 0.1     | 0.1           |

## Hydraulic retention time study for NFT

• Designed an experiment to exchange water at different intervals to determine effects of cumulative nutrient loads.


Treatments

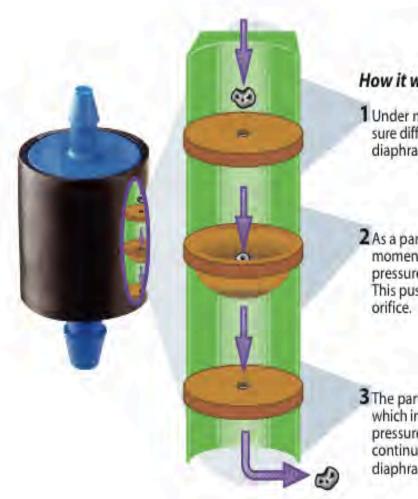
- 1. Hydro control (16 day)
- 2. 16 day
- 3. 12 day
- 4. 8 day
- 5. 4 day

\*\*Screened effluent to remove most solids

**\*\*No nutrient supplementation** 






|    | AU<br>Aquaponics<br>Water | Foliar<br>Sufficiency<br>Ranges for<br>Greenhouse<br>Lettuce | 4 Day   | 8 Day   | 12 Day  | 16 Day  | Hydro   |
|----|---------------------------|--------------------------------------------------------------|---------|---------|---------|---------|---------|
| Ν  | 180                       | 4.5-6.5%                                                     | 5.4%    | 5.6%    | 5.9%    | 6.0%    | 5.9%    |
| Р  | 7.5                       | 0.3-0.8%                                                     | 0.58%   | 0.63%   | 0.63%   | 0.60%   | 0.60%   |
| К  | 100                       | 6.0-10%                                                      | 7.8%    | 8.5%    | 8.6%    | 8.9%    | 7.7%    |
| Ca | 185                       | 1.0-2.0%                                                     | 3.7%    | 3.3%    | 3.4%    | 3.4%    | 2.0%    |
| Mg | 20                        | 0.35-0.75%                                                   | 0.48%   | 0.47%   | 0.50%   | 0.51%   | 0.52%   |
| S  | 50                        | 0.2-0.6%                                                     | 0.3%    | 0.3%    | 0.3%    | 0.3%    | 0.3%    |
| Fe | 0.05                      | 50-200 ppm                                                   | 87 ppm  | 78 ppm  | 83 ppm  | 60 ppm  | 132 ppm |
| В  | 0.08                      | 25-80 ppm                                                    | 23 ppm  | 26 ppm  | 29 ppm  | 34 ppm  | 71 ppm  |
| Cu | 0.02                      | 5-15 ppm                                                     | 7 ppm   | 7 ppm   | 7 ppm   | 6.8 ppm | 6.4 ppm |
| Mn | 0.05                      | 20-200 ppm                                                   | 692 ppm | 781 ppm | 591 ppm | 399 ppm | 315 ppm |
| Zn | 0.1                       | 20-75 ppm                                                    | 273 ppm | 244 ppm | 227 ppm | 172 ppm | 65 ppm  |

|    | AU<br>Aquaponics<br>Water | Foliar<br>Sufficiency<br>Ranges for<br>Greenhouse<br>Lettuce | 4 Day   | 8 Day   | 12 Day  | 16 Day  | Hydro   |
|----|---------------------------|--------------------------------------------------------------|---------|---------|---------|---------|---------|
| Ν  | 180                       | 4.5-6.5%                                                     | 5.4%    | 5.6%    | 5.9%    | 6.0%    | 5.9%    |
| Р  | 7.5                       | 0.3-0.8%                                                     | 0.58%   | 0.63%   | 0.63%   | 0.60%   | 0.60%   |
| К  | 100                       | 6.0-10%                                                      | 7.8%    | 8.5%    | 8.6%    | 8.9%    | 7.7%    |
| Ca | 185                       | 1.0-2.0%                                                     | 3.7%    | 3.3%    | 3.4%    | 3.4%    | 2.0%    |
| Mg | 20                        | 0.35-0.75%                                                   | 0.48%   | 0.47%   | 0.50%   | 0.51%   | 0.52%   |
| S  | 50                        | 0.2-0.6%                                                     | 0.3%    | 0.3%    | 0.3%    | 0.3%    | 0.3%    |
| Fe | 0.05                      | 50-200 ppm                                                   | 87 ppm  | 78 ppm  | 83 ppm  | 60 ppm  | 132 ppm |
| В  | 0.08                      | 25-80 ppm                                                    | 23 ppm  | 26 ppm  | 29 ppm  | 34 ppm  | 71 ppm  |
| Cu | 0.02                      | 5-15 ppm                                                     | 7 ppm   | 7 ppm   | 7 ppm   | 6.8 ppm | 6.4 ppm |
| Mn | 0.05                      | 20-200 ppm                                                   | 692 ppm | 781 ppm | 591 ppm | 399 ppm | 315 ppm |
| Zn | 0.1                       | 20-75 ppm                                                    | 273 ppm | 244 ppm | 227 ppm | 172 ppm | 65 ppm  |



#### How is this possible?

- NFT Lettuce •
- Removed most solids
- Avoid clogging the system
- **Dutch Bucket Cucumbers** ullet
- Solids deposited with irrigation
- Clog-free emitters (Bowsmith)



#### How it works

Under normal conditions, there is a slight pressure differential across each orifice in the silicone diaphragm.

2 As a particle encounters the orifice, there is a momentary obstruction, causing the differential pressure across the orifice to increase greatly. This pushes the particle through the expanding

3 The particle is then flushed through the orifice, which instantly returns to its normal size. Normal pressure conditions are restored. The particle continues through the remaining orifices in the diaphragm and out of the NonStop emitter.

# Solids may be the key for micronutrients in substrate culture...

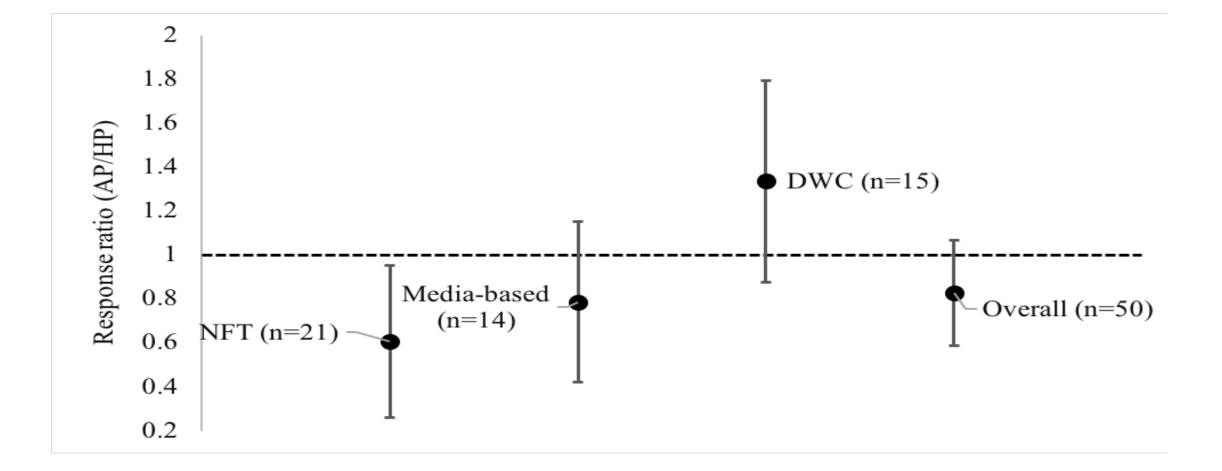
- Most iron (Fe) and boron (B) are bound/sorbed to solid waste
- Very scarce in solution
- Substrate allows for interaction between solids and plant roots
- Bacterial siderophores are a possible mechanism
- Rhizosphere microbiome research needed





Tipburn – Calcium deficiency

# NOT usually caused by lack of Ca in solution


Caused by high humidity

Made worse by high temperatures / long photoperiods Dealing with calcium deficiencies

- Almost always an environmental problem
- Increase air movement (vertical for lettuce0
- Reduce EC if possible
- Try to slow growth (chill solution?)

## Hydroponic System

How is plant yield affected by system type?

