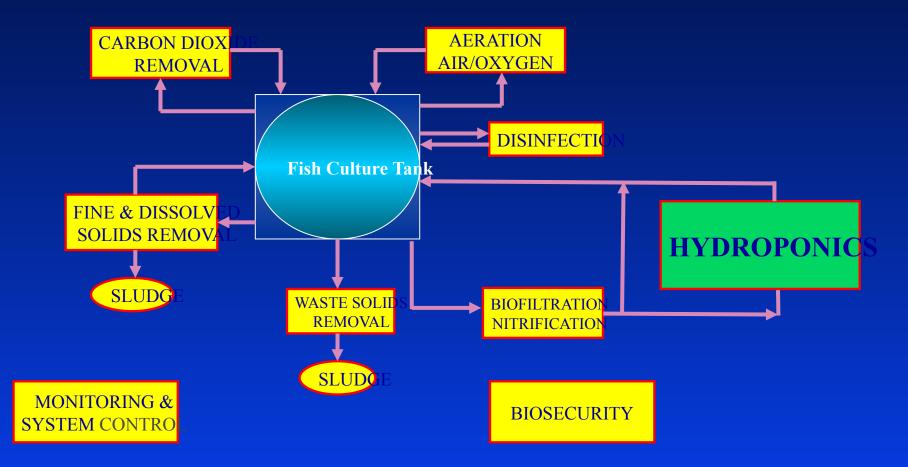
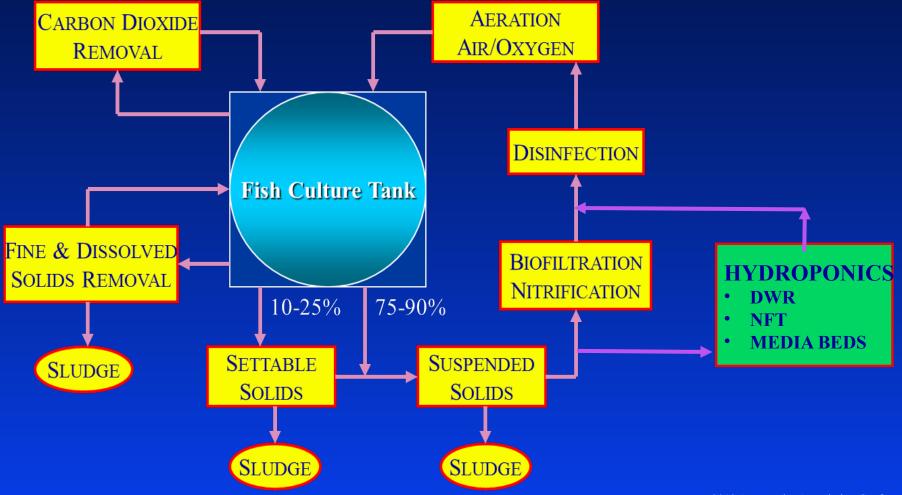
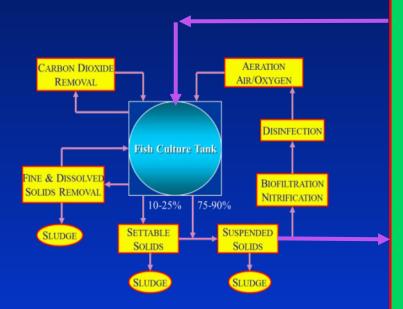
RAS Design and Engineering Principles with Aquaponics Integration

James M. Ebeling, Ph.D.


Research Engineer Ripple Root Aquaponics Huntsville, AL


Ken Rust


Louisiana Pond Management/Small Scale Aquaponics <u>kennethrust@cox.net</u>

"Closed Environmental Life Support System for Fish"

HYDROPONICS • DEEP WATER RAFTS • NFT • MEDIA BED • DRIP

Why Reuse Water?

Minimize Water Use

> conserve heat

➢Note, heat gain can also be a problem in some coldwater systems.

✗decrease water demand

K decrease wastewater discharge volume

reduce regulated TMDL discharged

Why Reuse Water?

Increase Biosecurity

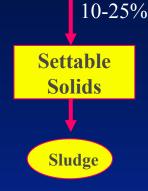
×locate on smaller "pathogen-free" ground water or municipal resources Smaller inlet flows are cheaper to disinfect Smaller discharge flows are easier to screen and prevent escapement \times locate farm away from regions with known pathogen problems

"Anything that holds water"

Polyethylene Tanks/Fiberglass Tanks

Plywood/Wood Tanks & Raceways

Aquarium & Algae Systems



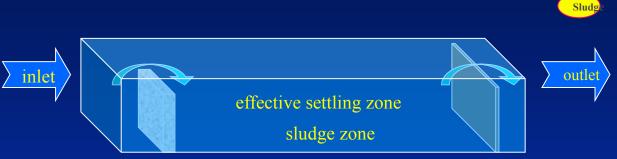
Settable Solids Removal

- Cornell Dual Drain System Bottom center drain/ Upper sidewall discharge
- Settling basins
- Swirl separators/ Radial Flow Clarifers

"RULE OF THUMB" 1 kg of feed \Rightarrow 0.30 kgs of solids

"RULE OF THUMB" Dual-Drain Design

- Dia:Depth = 3:1 to 6:1
- 15 to 25% through center drain
- 75 to 85% through sidewall discharge


10-25%

Settable Solids

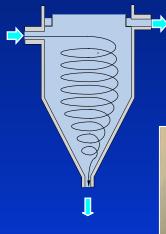
Sludg

Settling Basins

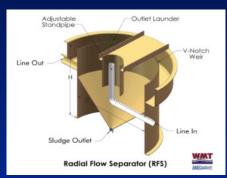
Raceway Quiescent Zone

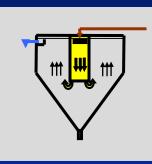
"Rule of Thumb" Settling Basin Design

- basin floor area of 40 Lpm/m² of flow
- 250 to 410 Lpm per m width of weir for outflow
- submerge inlet weir 15% of basin water depth
- use 25 cm wide weirs and use rounded edges
- maximize length of settling chamber as much as possible


10-25%

Settable Solids


Swirl Separator / Radial Flow Clarifiers



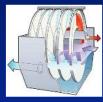
Stokes Law

10-25%

Settable Solids

Sludg

"RULE OF THUMB" Radial FlowDesign


Surface-loading rate for the radial-flow clarifier 187 Lpm/m² (4.6 gpm/ft²) of settling area

Suspended Solids Removal

75-90%

Suspended Solids

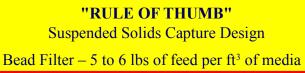
Sludge

Screen filtration

- rotating microscreens
- horizontal screen
- vertical screen

- Pressurized bead filters
- Pressurized sand filters
- Bag filters

Rotating Microscreen Filter



Pressurized Bead Filters

Pressurized Sand Filters

2019 Aquaponics Association Conference

75-90%

Suspended Solids

Sludg

Fine & Dissolved Solids

- Foam Fractionation
- Protein Skimmers

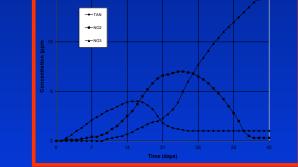
Fine & Dissolved Solids Removal

"RULE OF THUMB" Foam Fractionation Tank Volume every 2 to 4 hour

Solids Disposal

<u>By-Product</u> <u>NOT</u> a Waste Stream

- GeoTextile Bags
- Land application
- Composting
- Aquaponics


Biofiltration /Nitrification

Ammonia Oxidizing Bacteria Ammonia --> Nitrite

 $2 \operatorname{NH}_{4}^{+} + \operatorname{OH}^{-} + 3 \operatorname{O}_{2} \Rightarrow 2 \operatorname{H}^{+} + 2 \operatorname{NO}_{2}^{-} + 4 \operatorname{H}_{2} \operatorname{O}$

Nitrite Oxidizing Bacteria Nitrite \longrightarrow Nitrate 2 NO₂ + 1 O₂ \Rightarrow 2 NO₃⁻

"RULE OF THUMB" 1 KG FEED \Rightarrow ABOUT 0.03 KG AMMONIA

Biofiltration / Nitrification

- Trickling Biofilters
- Fluidized sand biofilters
- Moving bed BioReactors
- Media Bed Hydroponics

"RULE OF THUMB"

MBBR Design

- 17.14 g TAN/ft³ /day curler media @ 25 to 30 Deg C
- 13.26 g TAN/ft³ /day @ 15 to 20 Deg C
- 10.14 g TAN/ft³ /day @ 5 to 10 Deg C
- 3 to 5 min HRT
- 50% fill factor max 65%
- Air flow: 0.125 scfm/ft³ of reactor

Aeration / Oxygenation

Aeration Air/Oxygen

Aeration Systems

Air Stones, Packed Towers

Oxygenation Systems

Micro-Diffusers, Speece Cones

2019 Aquaponics Association Conference

"RULE OF THUMB" 1 KG FEED \Rightarrow 0.65 TO 1.00 KG OF O₂

Emergency Backup Oxygen

Normally Open Soleniod Opens on Power Failure

Carbon Dioxide Removal

Carbon Dioxide Removal

• Packed column degassing units

"RULE OF THUMB" UV

- 30 mW-sec/cm²
- 10-30 second contact times

• Ozone

Anfle

"RULE OF THUMB" Ozone 0.025 and 0.045 kg O₃ per kg feed

Monitoring & System Control

Monitoring & System Control

<u>Continuous</u>

- DO
- Level
- Flow
- Temperature
- Air pressure

Phone Dialer

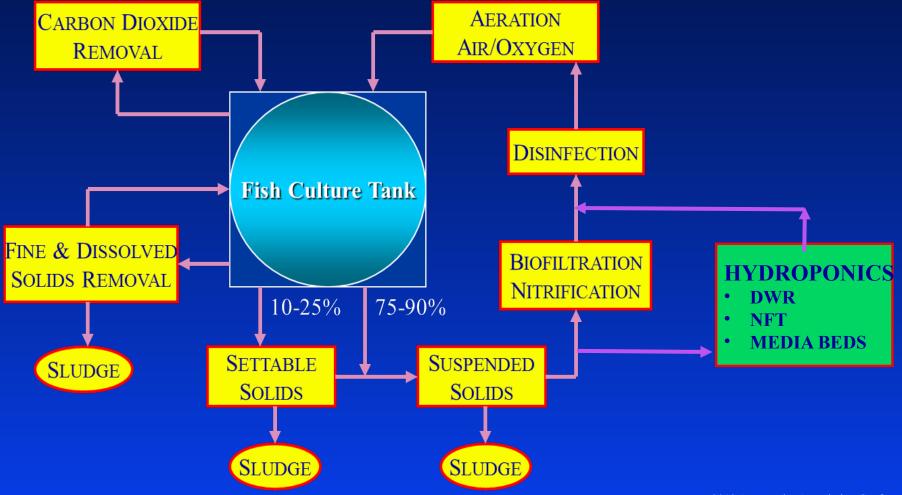
It takes only one mistake to KILL EVERYTHING IN YOU FACILITY!!!!

<u>Periodically</u>

- pH
- EC
- NH₃
- NO₂
- NO₃
- CO₂
- Alkalinity

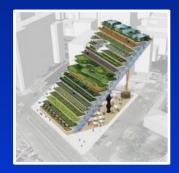
The most sophisticated monitoring and alarm system is an attentive human operator!

Continuous Monitoring


Monitoring & System Control

- Water Quality Lab
- Storage Feed, Chemicals, Product
- Equipment Storage
- Staff Support
- Back-up Generator
- Quarantine Area
- Waste Disposal

Aquaponics: the integration of aquaculture and hydroponics


Advantages of Aquaponics over RAS systems

- plants recover a substantial percentage of the traditionally discharged nutrients
- minimizing water exchange reduces operating costs of aquaponic systems
- secondary plant crop improves overall system profit potential
- savings in construction and operation by sharing operational and infrastructural costs
- opportunity for sustainable, localized, small-scale production

Disdvantages of Aquaponics over RAS systems

- large ratio of plant growing area to fish rearing area
- new set of skills aquaculturist and horticulturist
- limits use of treatment options for both fish and plants

RAS Aquaponics -Compromises <u>Compromise</u> of Aquaculture and Hydroponics

pH: 6.5 to 7.0

- Raise pH Calcium Hydroxide or Potassium Hydroxide
- Lower pH nitric, phosphoric or acetic acid

Temperature: 21 to 23 °C (70 to 74 °F)

- Tilapia usually: 25 to 28 °C (78 to 84 °F)
- Plants over 23°C (75°F) slow growth & susceptible to funus and phthium

RAS Aquaponics -Compromises <u>Compromise</u> of Aquaculture and Hydroponics

<u>Ammonia</u>: < 3.0

- Species dependent
- High ammonia concentrations toxic to both plants and fish

Dissolved Oxygen: 80% saturation

- Tilapia: > 3.0 mg/L
- Plants just as important!!

<u>Alkalinity:</u> > 100 mg/L as CaCO₃

- 90 to 200 mg/L
- Never use Sodium Bicarbonate (Baking Soda), high sodium levels

RAS Aquaponics -Compromises <u>Compromise</u> of Aquaculture and Hydroponics

Electrical Conductivity: lower than hydroponics systems

- Hydroponics: 1500-1800 (μS · m⁻¹)
- Aquaponics: 300 to 800 (μ S · m⁻¹)
- Continuous generation of nutriens
- Organic nature of nutrients results in a lower concentration of salts

Common Deficiencies:

- Potassium potasium hydroxide
- Calcium calcium hydroxide
- Iron chelated iron

Hydroponic/Aquaponic Systems

Water Based Culture:

- Floating Hydroponic Technique (Raft Culture, Deep water Culture)
- Nutrient Film Technique (NFT)

Media Based Culture:

- Reciprocating Systems
- (Ebb & Flow, Flood & Drain)
- Dutch Bucket
- Drip System Rockwool Slabs

Air Based Culture:

- Aeroponics
- Vertical Gardens

Hydroponics – Raft System

Friendly Farm Hawaii.

Lettuce Factory, Ithica, NY

Nelson & Pade, Inc.

<u>Raft System – Deep water</u>

<u>Advantages</u>

- Significant buffering due to large volume of water
- Well adapted for the production of short stature crops
- pH and EC maintained at constant levels
- Temperature of root zone optimized
- Dissolved oxygen maintined with airstones
- Ease of handling/harvesting
- Maximized greenhouse floor space

<u>Disadvantage</u>s

- Limited to crops like lettuce/basal/herbs
- Plants low to ground

Aquaponics <u>Hydroponics – NFT System</u>

Nelson & Pade, Inc.

E&T Farms Aquaponics.

Continental Organics

Aquaculture Systems Tech., LLC

NFT System

Advantages

- Low capital start-up costs
- Ease of handling/harvesting
- Maximized greenhouse floor space
- Plants are typically at waist level

Disadvantages

- Limited buffering due to small volume of water
- Difficult to control root temperature
- Disruption in water flow leads quickly to dehydration and wilting

<u>Reciprocating System (flood and drain)</u>

To ensure adequate aeration of plant roots, gravel beds are operated in a reciprocating (ebb and flow) mode, where the beds are alternately flooded and drained.

Reciprocating System (flood and drain)

<u>Advantages</u>

- Lowest capital start-up costs
- Ease of handling/harvesting
- Grow a wide variety of crops
- Maximized greenhouse floor space
- Media beds at waist level

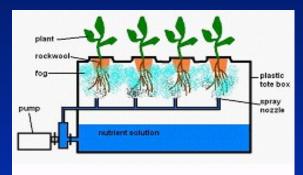
Disadvantages

- Media is can be very heavy & expensive
- Disruption in water flow leads to dehydration and wilting

Dutch Bucket System (bato buckets)

Dutch Bucket is basically a 2.5 to 3 gallon bucket with a special drain fitting that maintains a small reserve of nutrient at the bottom as a precautionary measure.

<u>Drip System – Rockwool Slabs</u>



These cucumbers are being grown in a slab-dripirrigation system. The nutrient solution is delivered via drip irrigation lines.

2019 Aquaponics Association Conference

Aeroponics

In an aeroponics environment the plants grow with the roots suspended in a misted solution of nutrients.

In an aeroponics environment the plants grow with the roots suspended in a misted solution of nutrients.

2019 Aquaponics Association Conference

Hydroponic Mediums

Perfect Medium

- Holds a even ratio of air to water
- Helps to buffer pH changes with time
- Is easily flushed and re-wets easily after being dehydrated
- Is reusable or biodegradable
- Is inexpensive and easy to obtain
- Lightweight and easy to work with.

Sometimes the Perfect Medium is NO medium

Hydroponic Mediums

Commonly Used Mediums:

Rockwool

Perlite

Coconut Coir

Coco Peat

Lightweight Expanded Clay Pellets

Common Pea Gravel

Engineering Design Details

<u>Hydroponics – Raft System</u>

Design Crieria: daily feed input/plant growing area (Hydroponics makes up 75% of the system water volume)

Raft System: channel (raceway) with a 1 ft depth, usually 4 to 8 ft wide covered by a floating sheet of polystyrene ($4 \text{ ft x 8 ft x 1 } \frac{1}{2}$ inches) for plant support.

"RULE OF THUMB???"

60 to 100 g of fish feed/day m² of raft area 60 to 90 min water turnover rate Aeration – airstones or diffusers

Engineering Design Details

<u>Hydroponics – NFT System</u>

Design Crieria: daily feed input/plant growing area (Hydroponics makes up small fraction of the system water volume)

NFT System: shallow flow of water, 1 lpm with 1% slope

"RULE OF THUMB" Waste Treatment 15-25 g of fish feed/day m² of raft area 1 lpm for rate 1% slope

Engineering Design Details

<u>Hydroponics – Reciprocating System (flood and drain)</u>

Design Crieria: daily feed media volume (Hydroponics makes up small fraction of the system water volume)

Volume ratio of 1 ft³ of fish-rearing to 2 ft³ of media

"RULE OF THUMB" Waste Treatment
1 ft³ of fish fish rearing volume to 2 ft³ of media (1/4 to ½ inch in diameter)

Engineering Design

Design Crieria: daily feed input / plant growing area?

Golden Rule of Engineering Mass Balance

Production = Consumption + Accumulation

Nutrients from Fish

Plant Growth

Excess or Deficit in Nutrients

2014 Greenhouse Crop Production & Engineering Design Short Course

Water Quality

Plant Nutrients

Free Macronutrients

(90 to 95% dry weight)

carbon (C): 30 to 50% oxygen (O): 30 TO 48% hydrogen (H): 6%

Macro-nutrients

(5 to 10% of dry matter) nitrogen (N): 22% phosphorus (P): 6% potassium (K): 29% calcium (Ca): 21% magnesium (Mg): 6% sulfur (S): 11%

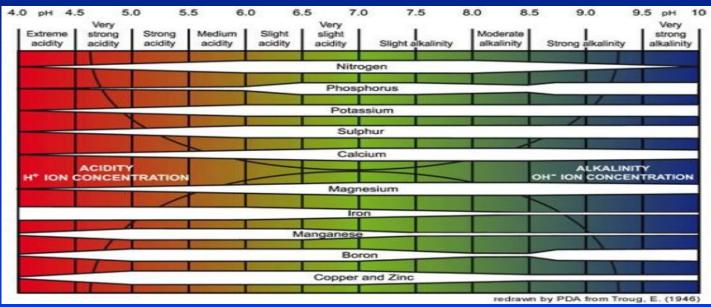
Micro-nutrients

(less than 1% dry weight) chlorine (Cl) iron (Fe) manganese (Mn) boron (B) zinc (Zn) copper (Cu) molybdenum (Mo)

> pH Control Calcium hydroxide Potassium hydroxide (Never Baking Soda)

> > 2019 Aquaponics Association Conference

Nutrient Availability and pH


High pH:

Decreases the availability of Iron, Manganese, Boron, Copper,

Zinc and Phosphorous

Low pH:

Decreases the availability of Potassium, Sulphur, Calcium Magnesium and Phosphorous

Questions?

For copy of presentation: JamesEbeling@aol.com